Joe Palca

Joe Palca is a science correspondent for NPR. Since joining NPR in 1992, Palca has covered a range of science topics — everything from biomedical research to astronomy. He is currently focused on the eponymous series, "Joe's Big Idea." Stories in the series explore the minds and motivations of scientists and inventors.

Palca began his journalism career in television in 1982, working as a health producer for the CBS affiliate in Washington, DC. In 1986, he left television for a seven-year stint as a print journalist, first as the Washington news editor for Nature, and then as a senior correspondent forScience Magazine.

In October 2009, Palca took a six-month leave from NPR to become science writer in residence at the Huntington Library and The Huntington Library, Art Collections, and Botanical Gardens.

Palca has won numerous awards, including the National Academies Communications Award, the Science-in-Society Award of the National Association of Science Writers, the American Chemical Society James T. Grady-James H. Stack Award for Interpreting Chemistry for the Public, the American Association for the Advancement of Science Journalism Prize, and the Victor Cohn Prize for Excellence in Medical Writing.

With Flora Lichtman, Palca is the co-author of Annoying: The Science of What Bugs Us (Wiley, 2011).

He comes to journalism from a science background, having received a Ph.D. in psychology from the University of California at Santa Cruz where he worked on human sleep physiology.

In 1969, astronaut Alan Bean went to the moon as the lunar module pilot on Apollo 12. Although the trip going to the moon covered the same distance as the trip back, "returning from the moon seemed much shorter," Bean says.

People will often feel a return trip took less time than the same outbound journey, even though it didn't. In the case of Apollo 12, the trip back from the moon really did take somewhat less time. But the point remains that this so-called "return trip effect" is a very real psychological phenomenon, and now a new scientific study provides an explanation.

Scientists may have found a critical weakness in Plasmodium falciparum, the parasite that causes malaria. Researchers say the discovery provides a promising target for new malaria therapies.

Pages